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This talk is concerned with verification

Verification is the process of confirming that the equations
were coded correctly.

Validation is the process of confirming that the equations
represent the correct physics.

Verification is the process of confirming that we are solving
the equations correctly. Validation is the process of
confirming that we are solving the correct equations.
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We describe 3 classes of hydrodynamic test
problems for an imploding capsule

The early phase: Concerned with 2 events:
(1) Initial shock propagation within the beryllium or glass capsule.
(2) The jump-off velocity, i.e. the initial velocity at the inner surface
when the hydrodynamic shock first arrives there.

The late-time solution: Concerned with the velocity and displacement,
as a function of time, at the inner surface of the capsule.

Perturbation growth: Concerned with the growth of perturbations
on the inner and outer surfaces of the shell and the feed-through
effect between both surfaces.
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The test configuration is a spherical thin shell
driven by an applied pressure on its outer surface
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The shell has an outer radius a and an inner radius b and density ρ0 
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The driving pressure is exponentially
decaying with time.

This form was chosen for its simplicity
and versatility.

Where K is the bulk modulus
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Earlier work in geophysical applications is
adaptable to the current problem

Relevant earlier work includes: 

Sharpe, J. A. , “The production of Elastic Waves by
Explosion Pressures, I Theory and Empirical Observations,”
Geophysics 7, 144-154 (1942).

Blake, F. G. Jr.,   “Spherical Wave propagation in Solid
Media, ”J. Accoust. Soc. Am. 24, pp211-214, (1952).

This earlier work can be adapted by considering a
convergent (instead of a divergent) spherical wave and
specializing to the case of a strength-less shell (σ = 1/2)
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The displacement and velocity at any location R
reduce to:
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Where τ, the retarded time, is given by t - (a - R) / c
and c is the longitudinal sound speed

The jump-off velocity is given by
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The effects of small compressibility on the jump-off
velocity can be accounted for

The main effect is to replace the sound speed c with the shock speed
Us = [(K + P0) / ρ0]1/2

We can further improve the estimate by taking into account the
following two effects:

(1)  The outer radius, a, decreases as the shock propagates into the
shell.

(2)  The peak pressure of a non-uniform shock wave decreases as a
result of nonlinear propagation in the rarefaction following it. This effect
is sometimes referred to as “hydrodynamic attenuation” and has been
worked out by Duvall in 1962.
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The late-time solution can be derived by equating the
work done with the rate of change of kinetic energy

The rate of change of kinetic energy of the shell is :
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The work done by the pressure is : 
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Conservation of volume implies that the particle velocity within
the shell at location R is proportional to 1/R2

Differentiation and the chain rule yields an expression for the
acceleration as a function of time.
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The late-time solution can be reduced to two coupled
first-order ordinary differential equations (ODE)

For an incompressible shell, the ODE’s can be obtained for any
applied pressure.

For the exponentially decaying pressure, the acceleration at the
outer surface of the shell is given by the simple general expression:
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Where the subscript o refers to values at the outer surface,
subscript i refers to values at the inner surface, V(t) is the
velocity, R(t) is the radius, and r(t) is the ratio               .)(/)( tRtR

io
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The late-time solution for the compressible shell can
be obtained if the shell is accelerated shocklessly

We use the exponentially decaying pressure as the driving force and
search for initial conditions that lead to shockless acceleration.

We would like the solution using these initial conditions to closely
match the time averaged solution for the shock accelerated case.

We thus require that the total mass and thickness of the shell in the
shockless case be identical to that in the shock accelerated case.
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These initial conditions must have smoothly varying
pressure and velocity across the shell at t = 0

These smoothly varying functions must also be consistent
with the equation-of-state (EOS) of the shell and the
exponentially decaying pressure on the outer boundary.

We start with the equations of momentum and mass conservation
in Eulerian spherical coordinates:
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Where P is the pressure, V is the velocity, ρ is the density and
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We restrict ourselves to the case of a simple yet useful EOS
in which the pressure P is related to the compression through
a bulk modulus K as follows: P = K (ρ / ρ0 – 1)
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The initial conditions leading to a shockless acceleration, are
given by the solution of the following 3 coupled ODE
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Subject to the boundary conditions that the pressure at the inner
boundary be identically zero, the total momentum be identically
zero, and the total mass be identical to the shock accelerated case.
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Earlier work on perturbation growth includes:

Weir, S. T., E. A. Chandler, and B. T. Goodwin, “Rayleigh-Taylor
Instability Experiments Examining Feedthrough Growth in an
Incompressible, Convergent Geometry,” Physical Review Letters, Vol
80, p. 3763-6, April 1998.

Bakharakh, S. M., et al “Hydrodynamic Instability in Strong Media,”
Report under LLNL-VNIIEF. LLNL report UCRL-CR-126710, March 1997.

Mikaelian, K. O., “Rayleigh-Taylor and Richtmyer-Meshkov
instabilities and mixing in stratified shells,” Phys. Rev. A Vol. 32,
No. 6, pp. 3400-3420, September 1990.
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We have extended earlier work to include and
exponentially decaying pressure

The perturbed radius Rper is given as a function of the unperturbed
radius Runp by the following equation:
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Where t is the time,               is the amplitude of the perturbation,
and              is the spherical harmonic.
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the unperturbed radius is given by the late-time solution of the
incompressible shell described earlier.

The analytic solution describe the evolution, in the linear regime,
of each node,              , in terms of two coupled ordinary second-
order differential equations (Eq. 20 in Mikaelian 1990).
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Which surface, if any, is more critical in
manufacturing the capsule to reduce perturbations ?

We applied the perturbation to only one surface at a time. We
found that for thin shells (such as the ones proposed for NIF),
both surfaces are critical.

Perfecting only one surface will not stop the perturbations from
feeding through to the other surface.

To account for the effect of compressibility, finely zoned 1D
calculations can provide the average position, velocity, and
acceleration at the inner and outer radii for a compressible shell.
These can in turn be used in a modified Bell-Plesset equation to
predict the growth of perturbations and compare with 3D code
calculations with various resolutions.
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Conclusions

The solution of the problems presented in this paper provide an
independent check on the ability of newly developed 3D codes to
model the hydrodynamics of a simplified implosion system.

Another benefit of these test problems is providing a way to
compare the efficiency of various algorithms such as adaptive
mesh refinement (Rendleman et al., 2000), or mesh free
methods (Dilts, 2001).


